Hints for Problem 8 and 21 of 6.1

For Problem 8, you use the formula provided right above the problem: $\sin (b t)=\frac{1}{2 i}\left(e^{i b t}-e^{-i b t}\right)$. While trying to compute the Laplace transform of this function, you will encounter the integral $\int_{0}^{\infty} e^{i b t} e^{-t s} d t$. The integrand can by written as $e^{t(i b-s)}$. Because you are integrating with respect to t, you can treat $i b-s$ as a constant. So you can find an antiderivative of $e^{t(i b-s)}$. Once you get the antiderivative, note that $\lim _{t \rightarrow \infty} e^{t(i b-s)}=0$. This is because $e^{t(i b-s)}=e^{-t s} e^{i t b}=e^{-t s}(\cos b t+i \sin b t)$, which is a product of a decaying function $e^{-t s}$ (remember $s>0$) and a bounded (sinusoidal) function.

For Problem 21, note that the improper integral $\int_{1}^{\infty} t^{-2} e^{t} d t$ converges/diverges if and only if the "tail" integral $\int_{M}^{\infty} t^{-2} e^{t} d t$ converges/diverges (where M is any large number). Intuitively, when M is large, t in the integrand is large and the integrand itself is also large (say, larger than t). This hints that integral diverges. You need to make this hand-waving argument more precise in your homework.

You can double check your computation of Laplace transform with Mathematica. For example, let f be a piecewise function given by $f(t)=1$ if $t<1$, and $f(t)=2$ if $t \geq 1$. Then you use the commands:

```
f[t_]:=Piecewise[{{1,t<1},{2,t>=1}}]
LaplaceTransform[f[t],t,s]
```

